18 research outputs found

    Model Reduction of port-Hamiltonian Systems as Structured Systems

    Get PDF

    Model Reduction of port-Hamiltonian Systems as Structured Systems

    Get PDF

    Structure Preserving Moment Matching for Port-Hamiltonian Systems:Arnoldi and Lanczos

    Get PDF
    Structure preserving model reduction of single-input single-output port-Hamiltonian systems is considered by employing the rational Krylov methods. The rational Arnoldi method is shown to preserve (for the reduced order model) not only a specific number of the moments at an arbitrary point in the complex plane but also the port-Hamiltonian structure. Furthermore, it is shown how the rational Lanczos method applied to a subclass of port-Hamiltonian systems, characterized by an algebraic condition, preserves the port-Hamiltonian structure. In fact, for the same subclass of port-Hamiltonian systems the rational Arnoldi method and the rational Lanczos method turn out to be equivalent in the sense of producing reduced order port-Hamiltonian models with the same transfer function

    Structure Preserving Moment Matching for Port-Hamiltonian Systems: Arnoldi and Lanczos

    Full text link

    Interpolation-based H2 Model Reduction for port-Hamiltonian Systems

    Get PDF

    Interpolation-based H2 Model Reduction for port-Hamiltonian Systems

    Get PDF

    Structure-preserving tangential interpolation for model reduction of port-Hamiltonian Systems

    Get PDF
    Port-Hamiltonian systems result from port-based network modeling of physical systems and are an important example of passive state-space systems. In this paper, we develop the framework for model reduction of large-scale multi-input/multi-output port-Hamiltonian systems via tangential rational interpolation. The resulting reduced-order model not only is a rational tangential interpolant but also retains the port-Hamiltonian structure; hence is passive. This reduction methodology is described in both energy and co-energy system coordinates. We also introduce an H2\mathcal{H}_2-inspired algorithm for effectively choosing the interpolation points and tangential directions. The algorithm leads a reduced port-Hamiltonian model that satisfies a subset of H2\mathcal{H}_2-optimality conditions. We present several numerical examples that illustrate the effectiveness of the proposed method showing that it outperforms other existing techniques in both quality and numerical efficiency
    corecore